Regions of interest; everybody wants them, but nobody knows how to get them. However, as Megatron once said, power flows to the one who knows how; desire alone is not enough.
Aware of this, I have created a script which will disenthrall you from the pit of ignorance and give you the power to create ROIs just about anywhere you please. The script uses AFNI's 3dUndump, which creates a spherical ROI of a given radius from which parameter values can be extracted using a tool like 3dmaskdump. The rationale is similar to creating ROIs using fslmaths or SPM's marsbar; and if you understand those, using 3dUndump is essentially the same thing.
The only caveat is that you must know the orientation of your dataset before using 3dUndump. AFNI defaults to RAI orientation, in which numbers increase from right to left, anterior to posterior, and inferior to superior; in other words, coordinates to the right of the origin will be negative (since numbers decrease going from left to right), and coordinates anterior to the origin will be negative (since numbers again decrease going from posterior to anterior). Always make sure to check the orientation using a command like 3dinfo -orient before creating your ROI, or open up your anatomical dataset in the AFNI viewer and navigate to the location that you want (e.g., right nucleus accumbens) and then write down the coordinates displayed in the upper left corner of the viewer. You can also use the option -orient LPI, if you're using coordinates from a paper.
This Python script that will let you input the coordinates, and then output a dataset ROI that can be overlaid on your anatomical image. The script can be found here.
Tutorial on 3dUndump:
Tutorial on MakeSpheres.py
Aware of this, I have created a script which will disenthrall you from the pit of ignorance and give you the power to create ROIs just about anywhere you please. The script uses AFNI's 3dUndump, which creates a spherical ROI of a given radius from which parameter values can be extracted using a tool like 3dmaskdump. The rationale is similar to creating ROIs using fslmaths or SPM's marsbar; and if you understand those, using 3dUndump is essentially the same thing.
The only caveat is that you must know the orientation of your dataset before using 3dUndump. AFNI defaults to RAI orientation, in which numbers increase from right to left, anterior to posterior, and inferior to superior; in other words, coordinates to the right of the origin will be negative (since numbers decrease going from left to right), and coordinates anterior to the origin will be negative (since numbers again decrease going from posterior to anterior). Always make sure to check the orientation using a command like 3dinfo -orient before creating your ROI, or open up your anatomical dataset in the AFNI viewer and navigate to the location that you want (e.g., right nucleus accumbens) and then write down the coordinates displayed in the upper left corner of the viewer. You can also use the option -orient LPI, if you're using coordinates from a paper.
This Python script that will let you input the coordinates, and then output a dataset ROI that can be overlaid on your anatomical image. The script can be found here.