Neuroimaging researchers are incessantly bedeviled by the problem of biased region of interest (ROI) analysis. One is constantly lured by the siren song of significant results and large effect sizes radiating from the stygian depths of a non-independent ROI; and while one can at times point toward their use of independent ROIs from other studies, there is always the lurking suspicion that the researcher already knew where the activation was before the ROI was chosen. I have witnessed men, otherwise Samsons in the field and Solomons in counsel, who have had their heads shorn by the harlot of biased analysis.
The most straightforward and appropriate way to do this, of course, is with a region defined on a priori assumptions about where your quarry might lie, based on theory or based on the results of other studies. This ensures that any results extracted from that region are uninfluenced by the model used to generate the statistical maps, therefore circumventing the issue of "double-dipping", or circular analyses (see Kriegeskorte et al, 2009). Another method is to use anatomical regions based on atlases, which again should be motivated by theory.
However, there is yet another option that I was unaware of until recently: Leaving one subject out (LOSO). According to this procedure, non-independence can be mitigated by constructing a general linear model (GLM) with every subject in the study except for one; statistics such as beta weights, time courses, etc., can then be extracted from the resulting parametric map for the subject that was left out, as this subject is no longer contributing to the signal observed in the given region. This process is then repeated and the appropriate parameter extracted for each subject. It is unlikely that there will be perfect overlap between all of the subjects included in each LOSO analysis, but if the effect is real and robust, then it should survive each of these non-overlapping regions.
One consideration with this procedure is what threshold to use for each LOSO analysis. One approach is to hold the p-value constant, in which case a higher t-threshold is used for each analysis due to a reduction in the degrees of freedom. The other approach is to hold the t-value constant, leading to a slightly increased p-value. Both approaches are defensible, although if there are wide variations in the ROI results with each approach, one may want to reconsider the reliability of their finding.
More details can be found in the paper by Esterman et al (2010); I hope this provides the necessary edification and enlightenment for those benighted souls wading about in the filth of their own squalor.
The most straightforward and appropriate way to do this, of course, is with a region defined on a priori assumptions about where your quarry might lie, based on theory or based on the results of other studies. This ensures that any results extracted from that region are uninfluenced by the model used to generate the statistical maps, therefore circumventing the issue of "double-dipping", or circular analyses (see Kriegeskorte et al, 2009). Another method is to use anatomical regions based on atlases, which again should be motivated by theory.
However, there is yet another option that I was unaware of until recently: Leaving one subject out (LOSO). According to this procedure, non-independence can be mitigated by constructing a general linear model (GLM) with every subject in the study except for one; statistics such as beta weights, time courses, etc., can then be extracted from the resulting parametric map for the subject that was left out, as this subject is no longer contributing to the signal observed in the given region. This process is then repeated and the appropriate parameter extracted for each subject. It is unlikely that there will be perfect overlap between all of the subjects included in each LOSO analysis, but if the effect is real and robust, then it should survive each of these non-overlapping regions.
One consideration with this procedure is what threshold to use for each LOSO analysis. One approach is to hold the p-value constant, in which case a higher t-threshold is used for each analysis due to a reduction in the degrees of freedom. The other approach is to hold the t-value constant, leading to a slightly increased p-value. Both approaches are defensible, although if there are wide variations in the ROI results with each approach, one may want to reconsider the reliability of their finding.
More details can be found in the paper by Esterman et al (2010); I hope this provides the necessary edification and enlightenment for those benighted souls wading about in the filth of their own squalor.