First, a few updates:
1) We just finished our first week of the semester here, and although things haven't been too busy, it may be a couple of weeks before I get back on a steady updating schedule. I'll do what I can to keep dropping that fatty knowledge on the regular, and educating your pale, soy-latte-white, Famous Dave's BBQ-stained faces on how to stay trill on that data and stack that cheddah to the ceiling like it's your job. And if you got one of those blogs dedicated to how you and your virgin-ass Rockband-playing frat brothers with names like Brady and Troy and Jason eating those cucumber salad sandwiches or whatever and you drop a link to this site, I'll know it. You show me that love, and I show it right the hell back.
2) While you're here, how about you donate a piece of that stack to the American Cancer Society. I mean, damn; I'm out there seven days a week on those roads, sweating and suffering, but you - you're at work procrastinating again, wringing your snow-bunny white hands over whether you should drop out of graduate school or just toughen it out and graduate in eight years, and while you're at it possibly take a swipe at that new Italian breezey who just entered the neuroscience program. Donate first, worry about those problems later.
3) We got another performance for you all this November, including Schumann's Adagio and Allegro for cello and piano, Resphigi's Adagio con Variazioni, and the Debussy cello sonata. Time and location TBA. Also, more music videos will be uploaded soon, but while you're waiting, you can listen to the latest Mozart Fantasie in D Minor, which has proved one of my most popular videos to date; last I checked, it had 57 views, which I think qualifies for viral status. We goin' worldwide, baby! World-WIDE!!
4) AFNI tutorials are next on the docket, after wrapping up the intro Unix tutorials for neuroimagers, and possibly doing a couple more FSL tutorials on featquery, FSL's ROI analysis tool. Beyond that, there isn't much else I have to say about it; now that you've mastered the basics, you should be able to get the program to jump through whatever hoops you set up for it and to do whatever else you need. There are more complex and sophisticated tools in FSL, to be sure, but that isn't my focus; I will, on the other hand, be going into quite a lot of details with AFNI, including how to run functional connectivity and MVPA analyses. It will take time, but we will get there; as with the FSL tutorials, I'll start from the bottom up.
Anyway, the latest Unix tutorial covers the basics on shells and variables. Shells are just ways of interfacing with the Unix OS; different shells, such as the t-shell (tcsh) and bash shell, do the same thing, but have different syntax and different nomenclature for how they execute commands. So, for example, an if/else statement in the t-shell looks different from a similar statement in the bash shell.
Overall, there's no need to worry too much about which shell you use, although AFNI's default is tcsh, so you may want to get yourself used to that before doing too much with AFNI. I myself use tcsh virtually all of the time, except for a few instances where bash is the only tool that works for the job (running processes on IU's supercomputer, Quarry, comes to mind). There are lots of tcsh haters out there for reasons that are beyond me, but for everything that I do, it works just fine.
As for variables, this is one of the first things you get taught in any intro computer science class, and those of you who have used other software packages, such as R or Matlab, already know what a variable is. In a nutshell, a variable is a thing that has a value. The value can be a string, or a letter, or a number, or pretty much anything. So, for example, when I type in the command
From there, you can build up more complicated scripts and, by having the variable as a placeholder in various locations in your script, only have to change the value assigned to it in order to change the value in each of those locations. It makes your programming more flexible and easier to read and understand, and is critical to know if you wish to make sense of the example scripts generated by AFNI's "uber" scripts.
With all of the tutorials so far, you have essentially all of the fundamentals you need to operate FSL. Really, you only need to understand how to open up a terminal and make sure your path is pointing to the FSL binaries, but after that, all you need to do is understand the interface, and you can get by with pointing and clicking. However, a more sophisticated understanding is needed for AFNI, which will be covered soon. Very soon. Patience, my pretties.
1) We just finished our first week of the semester here, and although things haven't been too busy, it may be a couple of weeks before I get back on a steady updating schedule. I'll do what I can to keep dropping that fatty knowledge on the regular, and educating your pale, soy-latte-white, Famous Dave's BBQ-stained faces on how to stay trill on that data and stack that cheddah to the ceiling like it's your job. And if you got one of those blogs dedicated to how you and your virgin-ass Rockband-playing frat brothers with names like Brady and Troy and Jason eating those cucumber salad sandwiches or whatever and you drop a link to this site, I'll know it. You show me that love, and I show it right the hell back.
2) While you're here, how about you donate a piece of that stack to the American Cancer Society. I mean, damn; I'm out there seven days a week on those roads, sweating and suffering, but you - you're at work procrastinating again, wringing your snow-bunny white hands over whether you should drop out of graduate school or just toughen it out and graduate in eight years, and while you're at it possibly take a swipe at that new Italian breezey who just entered the neuroscience program. Donate first, worry about those problems later.
3) We got another performance for you all this November, including Schumann's Adagio and Allegro for cello and piano, Resphigi's Adagio con Variazioni, and the Debussy cello sonata. Time and location TBA. Also, more music videos will be uploaded soon, but while you're waiting, you can listen to the latest Mozart Fantasie in D Minor, which has proved one of my most popular videos to date; last I checked, it had 57 views, which I think qualifies for viral status. We goin' worldwide, baby! World-WIDE!!
4) AFNI tutorials are next on the docket, after wrapping up the intro Unix tutorials for neuroimagers, and possibly doing a couple more FSL tutorials on featquery, FSL's ROI analysis tool. Beyond that, there isn't much else I have to say about it; now that you've mastered the basics, you should be able to get the program to jump through whatever hoops you set up for it and to do whatever else you need. There are more complex and sophisticated tools in FSL, to be sure, but that isn't my focus; I will, on the other hand, be going into quite a lot of details with AFNI, including how to run functional connectivity and MVPA analyses. It will take time, but we will get there; as with the FSL tutorials, I'll start from the bottom up.
Anyway, the latest Unix tutorial covers the basics on shells and variables. Shells are just ways of interfacing with the Unix OS; different shells, such as the t-shell (tcsh) and bash shell, do the same thing, but have different syntax and different nomenclature for how they execute commands. So, for example, an if/else statement in the t-shell looks different from a similar statement in the bash shell.
Overall, there's no need to worry too much about which shell you use, although AFNI's default is tcsh, so you may want to get yourself used to that before doing too much with AFNI. I myself use tcsh virtually all of the time, except for a few instances where bash is the only tool that works for the job (running processes on IU's supercomputer, Quarry, comes to mind). There are lots of tcsh haters out there for reasons that are beyond me, but for everything that I do, it works just fine.
As for variables, this is one of the first things you get taught in any intro computer science class, and those of you who have used other software packages, such as R or Matlab, already know what a variable is. In a nutshell, a variable is a thing that has a value. The value can be a string, or a letter, or a number, or pretty much anything. So, for example, when I type in the command
set x=10in the t-shell, the variable is x, and the value is now 10. If I wish to extract the value from x at any time, I prepend a dollar sign ('$') to it, in order to tell Unix that what follows is a variable. You can also use the 'echo' command to dump the value of the variable to the standard output (i.e., your terminal). So, typing
echo $xreturns the following:
10which is the value that I assigned to x.
From there, you can build up more complicated scripts and, by having the variable as a placeholder in various locations in your script, only have to change the value assigned to it in order to change the value in each of those locations. It makes your programming more flexible and easier to read and understand, and is critical to know if you wish to make sense of the example scripts generated by AFNI's "uber" scripts.
With all of the tutorials so far, you have essentially all of the fundamentals you need to operate FSL. Really, you only need to understand how to open up a terminal and make sure your path is pointing to the FSL binaries, but after that, all you need to do is understand the interface, and you can get by with pointing and clicking. However, a more sophisticated understanding is needed for AFNI, which will be covered soon. Very soon. Patience, my pretties.